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Procedures for evaluation and sequential modification of structural models
have attracted much interest in the recent psychometric literature. Kaplan
(1990) proposes to extend a procedure (post hoc model modification, or PMM)
popularized by Joreskog and Sérbom (1984). PMM is designed for cases where
one’s best attempt at an a priori theoretical model has been found to have poor
or marginal fit to the sample data. The researcher, in desperation, may wonder
if there is any model which fits the data. The PMM approach uses modification
indices to predict which path, if added to a structural diagram, would decrease
the chi-square fit statistic the most. One frees the parameter associated with that
path to obtain an improved model.

Kaplan (1990) recognizes some technical problems with the procedure. In
particular, a parameter when freed may not change much from zero, even though
the chi-square changes a lot. This can occur for at least two reasons. First,
sample size may be huge, and so the big change in chi-square was really
associated with a trivial imperfection in the model. (This is a tip-off that one has
too much power.) Second, the model may have been badly misspecified. In that
case, adding a parameter alters the estimated variance-covariance structure of
the parameter estimates significantly, thus altering the weighting of residuals in
computing the loss function. In either case, freeing the parameter is a bad idea.

By using the EPC statistic, Kaplan (1990) hopes to diagnose such occurrences
in advance.

The procedure described by Kaplan is not radical, and in the context of
mind-withering technical articles on structural modeling, surprisingly simple.
But does it make good statistical sense?

I don’t think so. The problem is not so much with Kaplan (1990) as with
the tradition he is trying to improve. The PMM procedure violates some of the
most basic statistical principles:

1. Tt performs post hoc selection without post hoc protection;

2. It implicitly assumes that a model remains unspecified in a particular

way. If this assumption is wrong, the procedure may function in a bizarre
fashion.
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These points are easy to grasp in context of the following case study.

You have sampled a 6 x 6 covariance matrix based on 100 observations
from a multivariate normal distribution. You do not know it, but in the
population your variables have a correlation matrix which is an
equicorrelation matrix (i.e., all correlations are equal to each other). In
this case the single value all correlations are equal to is, in the
population, .20. You do not know this either.

Suppose you choose to examine the data as a correlation structure. You
begin by testing the hypothesis that all correlations are zero, as a null model,
using LISREL. (My own program, EzPATH, would allow you, starting from
scratch, to set up and test such a model in less than 5 minutes.) Suppose (as
would usually happen in the case study) you encounter a relatively high chi-
square statistic with low probability. You are then ready to indulge in the kind
of statistical exercise described by Kaplan (1990).

How will Kaplan’s (1990) procedure behave in this situation? Very badly.
The procedure will pick the largest non-zero element in the correlation matrix,
and set it equal to a free parameter. It will keep doing this until the chi-square
statistic becomes insignificant.

The correct model, of course, requires freeing only one parameter, and
setting all the correlations equal to it. Kaplan’s (1990) procedure, (and the
automatic modification system of LISREL) generates, for any given sample, a
few free parameters corresponding to the largest correlations, and keeps the
others (erroneously) constrained to zero.

Just to see how badly this procedure would behave, 1 generated two
simulated samples in the situation 1 described, using a normal random number
generator. Inone, LISREL freed the correlation between variables 6 and 4. This
correlation was, in the Monte Carlo sample, .336. In the second example
LISREL freed four different correlations before stopping, and the largest was
.366.

Thus, in asituation where all correlations are .20 in the population, the PMM
procedure ended up deciding in my first sample that an acceptable model is that
all correlations but one are actually zero, and the other is .336.

This example dramatizes the dangers inherent in performing post hoc
analysis without appropriate statistical protection. This problem generalizes to
most situations where (a) a model has been misspecified, and (b) many of the
zero parameters have moderate, non-zero, relatively equal values. Insuch cases,
unless sample size is very large, sampling error generates an appreciable spread
of estimated values for these parameters in the sample. If you select data post
hoc, you can get a very misleading value of your largest parameter if you do not
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take this into account. Tukey recognized this more than 30 years ago in the
context of the analysis of variance, and we have taught his insight, and his test,
to a generation of undergraduates. Unfortunately, our statistical powers of
generalization seem to have been quite limited.

Note that the free one parameter and assign it to one coefficient approach
of PMM rules out a whole class of hypotheses, that is, those allowing assignment
of the same free parameter to more than one coefficient. Kaplan (1990) might
argue that LISREL ignores this possibility because such a model specifying
parameters are precisely equal is not realistic. But is a model where many factor
loadings are (precisely) zero any more realistic?

Kaplan (1990) might also respond that his procedure is not intended to be
used unless all important internal errors have been removed. This raises the
interesting question of how, when one obtains a good fit (one would obtain a
reasonably good fit with the model LISREL gives for Case 1 data), one is
supposed to know that serious internal errors have not been removed.

In the hope of provoking discussion and controversy, I will pose the
following three unsolved riddles of structural modeling.

1. Why do LISRELITES insist on performing an inappropriate post hoc
analysis without post hoc protective techniques?

2. Why do the modification procedures favored by Kaplan (1990) and others
rule out hypotheses which assign one free parameter to several coefficients?

3. What is the best protected post hoc procedure (analogous to the Scheffe
test in analysis of variance) for structural modeling?

Kaplan (1990), perhaps sensitive to riddle 1, states that one should only free
aparameter when "there is sufficient theoretical justification for doing so.” This
raises a fourth riddle.

4. What percentage of researchers would ever find themselves unable to
think up a theoretical justification for freeing a parameter?

In the absence of empirical information to the contrary, I assume that the
answer to riddle 4 is “near zero.” Call me a cynic if you like, but before judging
me too harshly, read the rich (and somewhat contradictory) psychological
literature on smoking and personality. You will see many interesting mini-
theories developed to explain correlations selected post hoc from huge matrices,
and declared significant without appropriate protective techniques.

I conclude that Kaplan’s (1990) procedure, attempting to improve on a
technique which is statistically bankrupt, is rather like trying to get a 20 year old
cartorunlike anew one by pumping more airin the tires. Probably the procedure
will work in the highly restricted class of situations where several paths in a path
diagram are zero, only one path (or perhaps two or three) needs to be added to
produce the true model, and the others are really zero paths. (Someone will
probably do a Monte Carlo study to prove this.) Does anyone out there think this
is a prototypic situation?
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Is there some way to employ PMM, while avoiding publication of incorrect
models? Possibly. The vast majority of incorrect models generated by
unprotected post hoc model modification would fail to fit a cross-validation
sample. Until we get a strong answer to riddle 3, it might be well to remember
the following adage: An ounce of replication is worth a ton of inferential
statistics.

Perhaps amoratorium should be declared on publication of causal modeling
articles using any PMM procedure similar to Kaplan’s (1990), unless such
articles provide evidence of cross-validation.

The literature of causal modeling already provides massive evidence that
practitioners will imitate what software manual writers do, rather than what they
preach. Mild cautions (e.g., Sorbom, 1989) about the post hoc fallacy, rendered
almost as an afterthought along with suggestions to cross-validate, will have no
effect unless violators are attacked in print. Strong action is necessary to clean
up the PMM mess. 1 have additional thoughts on this, but space here is too
limited to register them effectively.

My second major objection to Kaplan’s (1990) article is that it accepts,
rather uncritically, post hoc power analysis as a useful tool in covariance
structure modeling. Such analysis is not necessary to protect against cases where
a significant chi-square statistic results from too much power.

I have argued recently (Steiger, 1989) and not-so-recently (Steiger & Lind,
1980) that the appropriate question for statistical analysis in covariance structure
modeling is not whether fit is perfect. Rather, we should ask three questions.
They are:

1. How well does my model fit my statistical population?

2. How precisely have we determined population fit from our sample data?

3. Does the fit still appear good when we take into account the complexity
of the model and its number of free parameters?

Pursuing these questions leads to the conclusion that fit coefficients should
be (a) based on a population rationale, rather than heuristic arguments or a
sample rationale, (b) relatively unbiased, (c) relatively uninfluenced by sample
size, (d) reported with a confidence interval, and (e) adjusted for model
complexity.

An interval estimate reduces the chance of (a) rejecting a model which fits
very well (but not perfectly) because sample size is too large, and (b) accepting
a fit as good because the sample goodness of fit coefficient is high, when in fact
precision of estimation of the fit is too low to warrant such confidence.

My computer program EzPATH (Steiger, 1989) gives indices of fit which
are relatively uninfluenced by sample size. It also calculates and reports
confidence intervals for these coefficients. Situations (a) and (b) in the
preceding paragraph are detected in examples from the published literature. For
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example, Joreskog (1978) tested a circumplex hypothesis on a 6 x 6 correlation
matrix with n=710. Power was extremely high in this situation. Although these
data were often considered to fit a circumplex well, Joreskog concluded they did
not, because the chi-square statistic reached a probability level of .0076. This
is a classic case of too much power causing the chi-square test to be too sensitive
to minor departures from perfect fit. One could do an elaborate power analysis
to demonstrate this, but it is not necessary. The confidence interval on a
population equivalent of the Goodness-of-Fit Index (GFI) reported by LISREL
is computed by EzZPATH. The 90% confidence interval ranges from .984 to
.998! This demonstrates, simply and eloquently, that goodness of fit, though not
perfect, has been determined with high precision to be outstanding. The
significant chi-square can be ignored.

My interest in the statistical estimation of fit indices dates back more than
adecade. In 1980 (Steiger & Lind, 1980), I presented an original notion — that
the population noncentrality index ® (the value of the maximum likelihood or
generalized least squares discrepancy function obtained when a model is fit to
the population covariance matrix X) could be used as a natural measure of
badness of fit of a covariance structure model. I pointed out that this notion can
be improved on, however, because such a measure did not take into account the
inevitable effect of model complexity on population fit. Following a logic
similar to that of James, Mulaik, and Brett (1982), I suggested correcting this
index for model complexity by dividing by degrees of freedom, v. Taking the
square root of the resulting ratio gives an index which has much in common with
a root mean square standardized effect measure which can be calculated as a
summary measure of effect size in the analysis of variance (Steiger, 1990). The
resulting RMS index is, in the population

RMS = (D/v)'?

I am pleased that a number of colleagues and friends who attended the
Steiger-Lind paper presentation in 1980 and did not find noncentrality estimation
a particularly compelling notion at the time have now embraced the idea and/or
suggested variants of it (See, e.g., Bentler, 1989, 1990; Browne & Du Toit,
1989; McDonald, 1989; McDonald & Marsh, 1990). Itis doubly gratifying that
some of those authors (Browne & Du Toit, 1989; McDonald & Marsh, 1990),
as well as others (Mels, 1989) have cited the Steiger-Lind (1980) paper and
recognized its priority.

There are many possible indices of fit for structural models. Indeed, there
are infinitely many ways to transform the RMS index (or, indeed, ® itself) onto
the interval from O to 1. If a particular fit index can be expressed as a function
of a single noncentrality index, and that function satisfies an obvious monotonicity
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condition, it is easy to obtain a confidence interval for the index (see, e.g., Cox
and Hinckley, 1974, p. 212). In the user’s guide for my computer program
EzPATH (Steiger, 1989), I proved a surprising result which makes good use of
this fact. If a structural model is ICSF (invariant under a constant scaling factor)
in the sense of Browne (1982), then the population equivalents of the widely
used Joreskog-Sorbom (1984) GFI and AGFI fit indices can be shown to be a
simple function of the population noncentrality index. Specifically, letT", be the
population equivalent of the GFl and I", the population equivalent of the AGFI
(i.e., the values which would be obtained if these indices were computed on the
population covariance matrix X). Steiger (1989), relying heavily on results from
Browne (1974) and Tanaka and Huba (in press), proved that for a p x p
covariance matrix Z, with p* = p(p + 1)/2,

I =p/[2® +p]
and
L=1-@pm1-Tr).

Because both coefficients are simple functions of a single noncentrality
index, we can obtain consistent estimates, and confidence intervals, for them.
It turns out (Steiger, 1989) that at small to moderate sample sizes the sample GFI
and AGFI computed by LISREL can be seriously biased, and underestimate the
corresponding population quantity substantially.

The interval estimation approach will help avoid the fallacies of testing with
too much or too little power. It will not compensate for inappropriate post hoc
testing.

Even if we avoid PMM, some major problems remain. Suppose we are
testing a nested sequence of models. Adding parameters to a model will
generally improve fit. One view of the model fitting process is that the model
and data are like pieces of a jigsaw puzzle. We want goodness of fit which is a
result of a special match of model to data, rather than an inevitable consequence
of model complexity. If, in general, one model tends to fit data better than
another model, we should be prepared to compensate. But...how? This calls to
mind one of the great unsolved riddles of structural modeling.

5. How do we properly compensate for the fact that increasing complexity
of a model almost inevitably results in improvement in fit?

Providing a coherent rationale for solving riddle 5 may require a broader
perspective than that offered by the data at hand. One approach might be to
address the problem: In general, how well does this model fit covariance
matrices of this order? Examining this notion, Botha, Shapiro, and Steiger
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(1988) fit common factor models to randomly generated population matrices.
Simpler approaches (Steiger & Lind, 1980; James et al., 1982; Steiger, 1989)
assume that tautological improvement in fit is a simple function of degrees of
freedom lost (i.e., of free parameters gained). This assumption is possibly too
simplistic.

A closing thought: In the final analysis, it may be, in a sense, impossible to
define one best way to combine measures of complexity and measures of
badness-of-fit in a single numerical index, because the precise nature of the best
numerical tradeoff between complexity and fit is, to some extent, a matter of
personaltaste. The choice of amodelis a classic problem in the two-dimensional
analysis of preference. From that point of view, there can never be one best
coefficient for assessing fit (oramodel which is indisputably best) any more than
there is a single best automobile. On the other hand, I agree completely with the
sentiments expressed in James et al. (1982) — model parsimony should be
addressed in any reasonable model selection procedure.
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